תוצאות נוספות...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
× Send

מה קורה כשההיסטוריה פוגשת בינה מלאכותית

בינה מלאכותית וכתובות עתיקות
תוכן עניינים

איך מפענחים כתובת רומית עתיקה שחצי ממנה נמחק? ואיך יודעים היכן ומתי היא נכתבה? המשימה הזו דומה להרכבת פאזל של 10,000 חלקים, כשלפניכם רק שליש מהחלקים ואין תמונה על הקופסה. עד לא מזמן, החוקרים התמודדו עם אתגרים כמעט בלתי אפשריים: כתובות מהאימפריה הרומית – מאנדרטאות מפוארות ועד רישומים יומיומיים על לוחות עץ – הגיעו שבורות, דהויות או פגומות. כדי לשחזר את משמעותן, היה צורך למצוא “מקבילות היסטוריות”, כתובות אחרות עם נוסח דומה, סגנון משותף או מוצא זהה, ולחבר את הסיפור מחדש. זה דרש שילוב נדיר של זיכרון כמעט בלתי מוגבל, ניסיון של שנים ולעיתים גם הרבה מזל. היום, בזכות מודל הבינה המלאכותית Aeneas של Google DeepMind, מתרחשת מהפכה מקצועית אמיתית בחקר כתובות עתיקות.

 

 

הישארו מעודכנים

רוצים לקבל עדכונים בלייב? רוצים מקום בו אתם יכולים להתייעץ עם מומחי AI, לשאול שאלות ולקבל תשובות? רוצים לשמוע על מבצעים והטבות לכלי ה-AI שמשנים את העולם? הצטרפו לקהילות ה-AI שלנו.

 

 

אפשר גם להרשם לניוזלטר שלנו

 

הכירו את החוקר הדיגיטלי

כאן נכנס לתמונה Aeneas, מודל בינה מלאכותית פורץ דרך שפותח ב-Google DeepMind בשיתוף אוניברסיטאות בבריטניה וביוון. השם לא מקרי: כמו הגיבור המיתולוגי שנדד בין עולמות, גם הוא “מטייל” בין טקסטים, תקופות ומקומות כדי לחשוף קשרים נסתרים. הייחוד של Aeneas הוא בכך שהוא לא רק משלים את החלקים החסרים, אלא גם מבין את ההקשר ההיסטורי. הוא מנתח את הכתובת הן מבחינת התוכן הכתוב והן מבחינת המראה החזותי, ומשווה אותה למאגר עצום של למעלה מ-176,000 דוגמאות לטיניות מ-62 פרובינציות רומיות.

 

כך הוא מסוגל להציע לא רק שחזור מילולי, אלא גם פרשנות מעמיקה. בניגוד למודלים קודמים שהתבססו רק על טקסט, Aeneas הוא מודל “מולטימודלי” – משלב בין קריאת הטקסט לבין ניתוח הצורה, הסגנון, החומר ומאפיינים גיאוגרפיים. השילוב הזה מאפשר לו לזהות תבניות הכתיבה ולמקם אותן בזמן ובמרחב בדיוק חסר תקדים.

 

התרשים המצורף מתאר את אופן פעולתו של Aeneas: המודל מקבל במקביל את הטקסט של הכתובת ואת התמונה, ומשתמש ברשתות נפרדות לעיבוד המידע הלשוני והחזותי. מנגנון מבוסס Transformer מנתח את האותיות הקיימות, מזהה הקשרים היסטוריים, ומשלים חלקים חסרים. רכיב ה־Vision Network (ResNet) מאפשר לו לקשר בין מאפיינים חזותיים לבין מידע גיאוגרפי, ובסיום, להפיק שלוש תחזיות מרכזיות: הפרובינציה, התאריך והשחזור. המערכת גם מחפשת כתובות דומות במאגר ה־Latin Epigraphic Dataset ומדרגת אותן לפי רלוונטיות, כדי לספק לחוקר הקשרים ותובנות נוספות:

 

אופן הפעולה של Aeneas

אופן הפעולה של Aeneas. מקור: deepmind.google

 

איך Aeneas משנה את עבודת החוקרים

התוצאות מדברות בעד עצמן: במקום שבועות או חודשים של חיפוש ידני אחר מקבילות היסטוריות, Aeneas מספק ממצאים תוך שניות, עם 73% הצלחה בשחזור קטעים של עשרה תווים, 72% דיוק בזיהוי הפרובינציה הרומית שבה נכתבה הכתובת, ויכולת לתארך בטווח של 13 שנים בלבד. אבל המספרים הם רק ההתחלה. במחקר שערך צוות DeepMind דיווחו חוקרים שהמודל לא רק האיץ את עבודתם, אלא גם פתח להם כיווני מחשבה חדשים. אחד מהם סיפר: “המקבילות של Aeneas שינו לחלוטין את התפיסה שלי לגבי הכתובת. הוא זיהה פרטים שעשו את כל ההבדל בשחזור ובתארוך הטקסט.”

 

השינוי האמיתי הוא שהמודל לא מחליף את החוקר אלא עובד לצידו, מציע השערות מבוססות נתונים, מאתר דפוסים שאולי חמקו מעין אנושית, ומשאיר לחוקר את המרחב להעניק את ההקשר, הפרשנות וההבנה ההיסטורית העמוקה.

 

התרשים המצורף מציג השוואה בין יכולות סיווג כרונולוגי של Aeneas לבין מודל שפה גנרי שאומן גם הוא בלטינית. בצד שמאל, הפלט של Aeneas, שבו הכתובות מקובצות בבירור לפי התקופה, מ-650 לפנה”ס (כחול) ועד 800 לספירה (אדום). בצד ימין, הפלט של המודל הגנרי, שבו ההפרדה בין התקופות מטושטשת בהרבה. היכולת הזו, בשילוב נתוני הדיוק המרשימים, מראה כיצד המודל מספק בסיס מחקרי יציב ומהיר הרבה יותר:

 

השוואה בין יכולות סיווג כרונולוגי של Aeneas לבין מודל שפה גנרי שאומן גם הוא בלטינית

איך Aeneas משנה את עבודת החוקרים. מקור: deepmind.google

דוגמאות מרתקות מהשטח

אחת הדוגמאות הבולטות היא הניתוח שערך Aeneas לכתובת המפורסמת Res Gestae Divi Augusti – תיאור עצמי של הקיסר אוגוסטוס על הישגיו. במקום לקבוע תאריך חד-משמעי, המודל הציג התפלגות הסתברותית עם שני שיאים: האחד קטן יותר בין השנים 1-10 לפנה”ס, והאחר גדול יותר בין 10-20 לספירה. כך הוא שיקף במדויק את שתי התיאוריות המרכזיות של ההיסטוריונים. ההישג מרשים עוד יותר כשמבינים שהוא התבסס על ניתוח מאפיינים לשוניים עדינים וסמנים היסטוריים כמו תארים רשמיים ואזכורי אנדרטאות, וכן על מציאת מקבילות בטקסטים חוקתיים קיסריים הקשורים למורשתו של אוגוסטוס.

 

במקרה אחר, Aeneas שחזר שמות של בני משפחה רומית שאבדו ממצבת קבורה שבורה, וחשף משפחה שלא הייתה מוכרת קודם בבריטניה הרומית. ובמקרה נוסף, הוא קישר בין כתובת מהמאה השנייה לספירה לבין טקסט דומה מהמאה השביעית, גילוי שפתח חלון חדש להבנת המשכיות תרבותית לאורך מאות שנים.

 

הגרף שלפניכם מציג את תחזית התארוך של Aeneas לכתובת Res Gestae. הצבע הכחול מייצג את התפלגות ההסתברויות שהפיק המודל, בעוד הקווים והעמודות הסגולות מציינים את שתי ההשערות המרכזיות במחקר ההיסטורי. ניתן לראות בבירור את שני השיאים – האחד בין השנים 1-10 לפנה”ס והשני, הבולט יותר, בין השנים 10-20 לספירה – מה שממחיש כיצד Aeneas מצליח ללכוד באופן כמותי את הוויכוח האקדמי סביב תיארוך הכתובת:

 

תחזית התארוך של Aeneas לכתובת Res Gestae

תחזית התארוך של Aeneas לכתובת Res Gestae. מקור: deepmind.google

השלכות מרחיקות לכת על עתיד המחקר ההיסטורי

השפעתו של Aeneas חורגת הרבה מעבר לפענוח כתובות בודדות. הוא משנה את כללי המשחק במדעי הרוח, ומראה כיצד בינה מלאכותית יכולה לא רק להאיץ את קצב המחקר, אלא גם לחשוף תובנות שלא היו נגישות עד כה.

 

בארכיאולוגיה, החוקרים יכולים כעת לקשר בין ממצאים מאזורים ואתרים שונים בצורה שלא התאפשרה בעבר, לזהות דפוסי נדידה, מסלולי מסחר והפצת תרבויות בקנה מידה חדש. בתחום שימור המורשת, כתובות שנחשבו אבודות מבחינת משמעותן מקבלות פרשנות חדשה, ואוספי מוזיאונים שהיו בגדר תעלומה במשך עשרות שנים משתלבים בסיפורים היסטוריים רחבים יותר.

 

ההשפעה אינה רק אקדמית – העובדה שהמודל זמין בחינם לכל אדם באתר פותחת את עולם המחקר האפיגרפי בפני סטודנטים, מורים, אנשי מוזיאונים וחובבי היסטוריה, ומאפשרת לכל מי שסקרן לגעת במורשת האנושית בצורה ישירה ומקצועית.

למה זה לא מושלם (ולמה זה בסדר)

חשוב להיות כנים – Aeneas הוא לא קסם שפותר הכל. יש לו מגבלות ברורות, הוא מתמקד בעיקר בכתובות לטיניות, רמת הדיוק יורדת כאשר הנזק לכתובת חמור במיוחד, והוא לעולם לא יוכל להחליף את האינטואיציה והידע ההיסטורי העמוק של חוקר אנושי. יתרה מכך, השימוש בבינה מלאכותית במחקר היסטורי מעלה שאלות מתודולוגיות קריטיות: איך מונעים הטיה בפרשנות? כיצד שומרים על חשיבה ביקורתית כשמכונה מספקת תשובות שנראות מוחלטות?

 

דווקא השאלות האלו הן סימן לכך שהמהפכה אמיתית. כל טכנולוגיה פורצת דרך מאלצת אותנו לבחון מחדש את השיטות שלנו, לחדד את הכלים המחקריים, ולפתח גישות חדשות שמחזקות את השותפות בין אדם למכונה.

 

השותפות בין אדם למכונה

עתיד המחקר ההיסטורי אינו טמון בתחרות בין אדם למכונה, אלא בשיתוף פעולה ביניהם. Aeneas מראה שהשילוב האפקטיבי ביותר קורה כשהמודל מספק כלים אובייקטיביים ומהירים, והחוקר האנושי מוסיף את ההקשר, הפרשנות והחשיבה הביקורתית. הרחבת הגישה הזו לשפות עתיקות נוספות, יוונית קדומה, אכדית, מצרית עתיקה, עשויה לפתוח אוצרות ידע שחיכו אלפי שנים להיחשף, ולהוות תרומה אדירה לשימור המורשת האנושית. ואולי החלק המלהיב ביותר הוא שכל אחד מכם יכול כבר עכשיו להתנסות בפענוח כתובות רומיות אמיתיות. לא צריך תואר בהיסטוריה או מומחיות בבינה מלאכותית, רק סקרנות ורצון לגלות סיפורים שחרוטים באבן.

 

המסר האמיתי של Aeneas הוא שההיסטוריה אינה קפואה בעבר – היא חיה, מתפתחת וממתינה שנחיה אותה מחדש. כשמשלבים את הטכנולוגיה המתקדמת ביותר עם הסקרנות האנושית, אנחנו לא רק שומרים על העבר, אנחנו מחזירים אותו לחיים. הרגע הזה הוא פרק מיוחד בהיסטוריה של ההיסטוריה עצמה, ואתם יכולים להיות חלק ממנו.

 

למי שמעוניין לקרוא את המחקר המלא שפורסם ב- Nature, כנסו כאן. ולקוד הפתוח בגיטהאב, כנסו כאן.

הישארו מעודכנים

רוצים לקבל עדכונים בלייב? רוצים מקום בו אתם יכולים להתייעץ עם מומחי AI, לשאול שאלות ולקבל תשובות? רוצים לשמוע על מבצעים והטבות לכלי ה-AI שמשנים את העולם? הצטרפו לקהילות ה-AI שלנו.

 

 

אפשר גם להרשם לניוזלטר שלנו

 

רוצים הרצאה או ייעוץ של רון גולד?
השאירו פרטים ונשמח לחזור אליכם עם המידע הרלוונטי
אולי יעניין אותך גם...
guest
0 תגובות
Inline Feedbacks
צפה בכל התגובות
Let's update

רוצים לקבל עדכונים על כל מה שחדש ומעניין בעולם ה-AI? הרשמו לניוזלטר שלנו!

אירועי AI קרובים

תפריט נגישות

תוצאות נוספות...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

מה קורה כשההיסטוריה פוגשת בינה מלאכותית