תוצאות נוספות...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
× Send

איך בינה מלאכותית יכולה להבין בלי להבין? הצפנה הומומורפית ומודלי שפה גדולים

הצפנה ומודלי שפה
תוכן עניינים

תדמיינו שאתם שולחים למודל שפה כמו ChatGPT או Gemini או perplexity מסמך רגיש (למשל דו”ח רפואי או הסכם עסקי) או איזה סוד מסחרי, אולי פרטי אשראי של לקוח. אם המשפט הזה לא גרם לכם לזוז באי-נוחות בכיסא, יש פה בעיה.
יודעי דבר יקפצו ויגידו ישר “אבל בתנאי שימוש הם מבטיחים לא לשמור ולא להשתמש בדאטא שלי אם אני רק אשלם המון כסף כל חודש”. זה נכון, אבל תקראו לי פסימי, אני לא מאמין להבטחות – אני מעדיף דברים שאני שולט בהם ויכול להבטיח שהסודות המידע הכי רגיש שלי נשאר רק בידים הנכונות. מצד שני, לא להשתמש במודלי שפה זה גם לא אופציה טובה – חייבת להיות דרך לקבל גם וגם. איזשהו פתרון כדי שהמודל “יבין” את הטקסט ויגיב אליו מצד אחד, אבל שלא ידע בדיוק מה כתוב שם. זה בעצם מעלה את השלאה – אם היה אפשר להצפין את הטקסט כך שהמודל יוכל לעבוד עליו מבלי לדעת מה כתוב בו בכלל?

 

הישארו מעודכנים

רוצים לקבל עדכונים בלייב? רוצים מקום בו אתם יכולים להתייעץ עם מומחי AI, לשאול שאלות ולקבל תשובות? רוצים לשמוע על מבצעים והטבות לכלי ה-AI שמשנים את העולם? הצטרפו לקהילות ה-AI שלנו.

 

 

אפשר גם להרשם לניוזלטר שלנו

 

מהי הצפנה הומומורפית?

לחידה הזאת יש פתרון – הצפנה הומומורפית (Homomorphic Encryption) , תחום מתפתח שמתחיל לשנות את הדרך שבה אנחנו חושבים על פרטיות בעולם של בינה מלאכותית. מה זה בעצם הצפנה הומומורפית? בוא נתחיל במה היא לא.

 

היא לא כמו רוב שיטות ההצפנה אשר מגינות על המידע בכך שהופכות אותו לבלתי קריא. הצפנות האלה לא טובות במקרה שלנו כי אם רוצים לעבד את המידע (לחשב משהו, לעשות פרדיקציה, להריץ עליו אלגוריתם), צריך קודם לפענח קודם ואז מי שמריץ את העיבוד רואה את המידע לא מוצפן. בהקשר הזה, הצפנה הומומורפית מאפשרת לבצע חישובים ישירות על המידע המוצפן, בלי לפתוח אותו.

 

לדוגמה, נניח ששני אנשים מחזיקים במספרים סודיים ורוצים לדעת את הסכום הכולל בלי לחשוף את המספרים עצמם. באמצעות הצפנה הומומורפית, אפשר להצפין את שני המספרים, לחשב עליהם את הסכום כשהם מוצפנים ולקבל תוצאה מוצפנת. רק מי שמחזיק במפתח הפרטי יוכל לפענח את הסכום הסופי.

המגבלות והאתגרים בהצפנה הומומורפית במודלי שפה גדולים

אז אפשר להשתמש בהצפנה הומומורפית על מודלי שפה גדולים? מסתבר שלא בקלות כל כך והסיבה נאוצה בדרך שהמודלים האלה עובדים. באופן דיי גורף, מודלי שפה גדולים לומד לחזות את המילה הבאה (או התו הבא) על בסיס מה שכתוב לפני. כדי לעשות זאת, המודל מעביר את המילים דרך תהליך של קידוד (encoding) כלומר המרת טקסט למספרים ומחשב עליהם הסתברויות מתמטיות.

 

כל הקסם של מודלי שפה גדולים הוא בעצם כלי חישובי גדול שיודע לנחש מילה לפי מה שסטטיסטית סביר שתהיה לאור טקסטים שהמודל ראה כבר.

 

הרעיון של שילוב הצפנה הומומורפית הוא לאפשר למודל לבצע את אותו תהליך על טקסט מוצפן. במקום לראות את המילים עצמן, הוא יקבל גרסה מוצפנת שלהן, יחשב את ההסתברות של ה”טוקן” הבא (המילה או החלק של מילה הבא), גם היא בצורה מוצפנת, ויחזיר תוצאה מוצפנת. רק הצד שמחזיק במפתח יוכל לפענח את התוצאה ולקרוא את הטקסט החוזר. במילים אחרות:🔒 הטקסט נכנס מוצפן 🤖 המודל מחשב על נתונים מוצפנים 🔑 רק הפלט הסופי מפוענח.

 

הצפנה הומומורפית

הצפנה הומומורפית עם מודלי שפה גדולים

איך הצפנה הומומורפית עובדת במודלי שפה

איך הקסם הזה עובד? אז קודם כל, הוא עדיין לא עובד הכי טוב כי כרגע האלגורתמים הם מאוד יקרים לחישוב מה שעושה את השימוש בטכנולוגיה מאוד איטי. אבל, הרעיון המרכזי הוא כזה.

 

מודלי שפה רגילים (כמו GPT) עובדים על טוקנים, מספרים שמייצגים מילים, חלקי מילים או תווים. כל טוקן כזה עובר דרך שכבות של חישובים מתמטיים רגילים על מספרים. אבל ברגע שאנחנו מצפינים את המספרים האלה, הם כבר לא “מספרים רגילים” אלא הם הופכים להיות אובייקטים מתמטיים אחרים לגמרי.

 

המודל לא יכול סתם לעשות עליהם חישוב רגיל, כי הוא לא מכיר אותם, הרי הוא מעולם לא למד עליהם. לכן, אי אפשר פשוט להצפין את הקלט הרגיל ולתת למודל המאומן לעבוד עליו – יש צורך לשנות משהו עמוק יותר.

השלבים המרכזיים

כדי להתמודד עם זה, עושים 4 שלבים מרכזים:

1. המודל עצמו מאומן באופן רגיל על טקסט לא מוצפן. במהלך האימון הוא לומד את החוקים הסטטיסטיים של השפה: אילו מילים נוטות לבוא אחרי אילו מילים, איך משפטים בנויים, וכדומה – השלב הזה כולם עושים ואתם מקבלים חינם בעצם.

2. אחרי שהמודל כבר מאומן, עוברים עליו ומחליפים את פעולות החישוב הרגילות בגרסאות תואמות להומומורפיות. למשל, במקום חיבור רגיל משתמשים בחיבור הומומורפי. המשמעות היא שכל החישובים ייעשו על ערכים מוצפנים, אבל בצורה שמובטחת לתת את אותה תוצאה כמו אם היו רגילים (לאחר פיענוח).

3. בזמן שאתם משתמשים במודל, הטקסט שלכם עובר קידוד יעודי שלכם עם ההצפנה. הטוקנים עצמם לא מועברים למודל כפי שהם, במקום זאת הם עוברים קידוד למספרים (כמו תמיד) ואז מוצפנים לפי שיטה הומומורפית שמבטיחה שניתן לבצע עליהם פעולות מתמטיות (ולא רק לשמור אותם סודיים).

4. הטקסט המוצפן עובר למודל השפה שלכם והפלט הסופי חוזר מוצפן גם כן. במחשב שלכם אתם פותחים את ההצפנה ומקבלים טקסט רגיל, כאילו מעולם לא הייתה הצפנה בכלל.

 

4 שלבי ההצפנה

4 שלבי ההצפנה

המשמעות והפוטנציאל של הצפנה הומומורפית

המשמעות של טכנולוגיה כזו עצומה: ניתן לשלוח למודל מידע סודי בלי לחשוש שיחשף – לא משנה מה הספק מבטיח לכם. חברות יכולות להריץ ניתוחים משותפים על נתונים רגישים, מבלי לחשוף אותם זו לזו. המודל יכול לפעול על שרת חיצוני מבלי לדעת כלל מה המידע שעליו הוא עובד.

 

אז מה כן אפשרי כבר היום? אפשר להריץ מודלים בסביבות חומרה שמצפינות את הזיכרון ומבודדות את זמן הריצה (TEE), כך שהדאטה והמשקלים מוגנים גם מספק התשתית. בענן זה קיים היום על גבי מכונות GPU חסויות (למשל Azure Confidential GPU VMs עם NVIDIA H100/‏AMD SEV-SNP) ומשמש כבר לחישוב חסוי מקצה לקצה. זה לא אותה שיטה אבל בפועל מונע גישה חיצונית לקלטים/פלטים בזמן הריצה, עם עלות תפעולית מבחינת חישוב נמוכה יחסית.

 

החסרון של הפתרון הזה הוא שגם פה יש רכיב אמון עצום אל מול ספק ה LLM שלנו שאי אפשר להבטיח אם כי יותר קל לבדוק שהבטחות של אותו ספק אכן מתקימות. פתרון אחר שעוקף את הבעיה אך שמור רק לארגונים הגדולים ביותר הוא חוזים עם חברות LLM שיתקינו להם שרתים עם ה LLM בסביבה שלהם.

 

פתרון זה מייתר צורך בהצפנה אך כאמור שמור רק לחברות גדולות מאוד והוא שימושי רק אם השימוש ב LLM בתוך הארגון מספיק גדולה כדי להצדיק מהלך שכזה. בהקשר של הצפנה הומומורפית, ישנם כבר פתרונות עובדים על SML (Small Language Models) יעודים שמפותחים לצרכים ספציפים לאור העלות החישובית הגדולה של הפתרון עבור LLMs.

חזון חדש

הצפנה הומומורפית מציבה חזון חדש לעולם הבינה המלאכותית: מודלים שיכולים לעבוד על מידע מבלי לדעת מה הוא. זהו שינוי תפיסתי עמוק, בינה מלאכותית שאינה “מבינה” תוכן, אלא רק מבצעת חישובים מתמטיים מדויקים שמניבים תוצאה נכונה גם כשהכול מוצפן.

 

השילוב בין פרטיות מלאה וביצועי למידה חישוביים עשוי לאפשר בעתיד שימוש בטכנולוגיות כמו ChatGPT בתחומים רגישים במיוחד (לדוגמה, רפואה, משפטים ופיננסים) מבלי לוותר על סודיות.

 

הדרך לשם עוד ארוכה, אבל אם נצליח לגרום למכונות לחשוב על נתונים בלי לדעת מה הם, אולי נוכל סוף־סוף לשלב חכמה מלאכותית עם ביטחון אנושי אמיתי.

הישארו מעודכנים

רוצים לקבל עדכונים בלייב? רוצים מקום בו אתם יכולים להתייעץ עם מומחי AI, לשאול שאלות ולקבל תשובות? רוצים לשמוע על מבצעים והטבות לכלי ה-AI שמשנים את העולם? הצטרפו לקהילות ה-AI שלנו.

 

 

אפשר גם להרשם לניוזלטר שלנו

 

רוצים הרצאה או ייעוץ של טדי לזבניק?
השאירו פרטים ונשמח לחזור אליכם עם המידע הרלוונטי
אולי יעניין אותך גם...

כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

Let's update

רוצים לקבל עדכונים על כל מה שחדש ומעניין בעולם ה-AI? הרשמו לניוזלטר שלנו!

אירועי AI קרובים

תפריט נגישות

תוצאות נוספות...

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
וובינר סוכני העל של Genspark
3/11/2025 - בשעה 20:00